Improving ultimate convergence of an augmented Lagrangian method
نویسندگان
چکیده
Optimization methods that employ the classical Powell-Hestenes-Rockafellar Augmented Lagrangian are useful tools for solving Nonlinear Programming problems. Their reputation decreased in the last ten years due to the comparative success of Interior-Point Newtonian algorithms, which are asymptotically faster. In the present research a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its “pure” counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the Interior Point method is replaced by the Newtonian resolution of a KKT system identified by the Augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page: http://www.ime.usp.br/∼egbirgin/tango/.
منابع مشابه
Augmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems
One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...
متن کاملAugmented Lagrangian Methods and Proximal Point Methods for Convex Optimization
We present a review of the classical proximal point method for nding zeroes of maximal monotone operators, and its application to augmented Lagrangian methods, including a rather complete convergence analysis. Next we discuss the generalized proximal point methods, either with Bregman distances or -divergences, which in turn give raise to a family of generalized augmented Lagrangians, as smooth...
متن کاملLocal convergence of an augmented Lagrangian method for matrix inequality constrained programming
We consider nonlinear optimization programs with matrix inequality constraints, also known as nonlinear semidefinite programs. We prove local convergence for an augmented Lagrangian method which uses smooth spectral penalty functions. The sufficient second-order no-gap optimality condition and a suitable implicit function theorem are used to prove local linear convergence without the need to dr...
متن کاملConvergence Analysis of the Augmented Lagrangian Method for Nonlinear Second-Order Cone Optimization Problems
The paper focuses on the convergence rate of the augmented Lagrangian method for nonlinear second-order cone optimization problems. Under a set of assumptions of sufficient conditions, including the componentwise strict complementarity condition, the constraint nondegeneracy condition and the second order sufficient condition, we first study some properties of the augmented Lagrangian and then ...
متن کاملAugmented Lagrangian methods with smooth penalty functions
Since the late 1990s, the interest in augmented Lagrangian methods has been revived, and several models with smooth penalty functions for programs with inequality constraints have been proposed, tested and used in a variety of applications. Global convergence results for some of these methods have been published. Here we present a local convergence analysis for a large class of smooth augmented...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optimization Methods and Software
دوره 23 شماره
صفحات -
تاریخ انتشار 2008